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Using a discrete-continuous model consisting of a viscoelastic rod with an absolutely rigid body on the end of it loaded with a 
follower force as the example, dynamic modelling of the stability and the transient impulse functions of the system is carried out 
based on the solution of the equations of motion. © 2004 Elsevier Ltd. All rights reserved. 

The effect of dissipative forces and concentrated masses on the stability of non-conservative continuous 
models with a finite-dimensional approximation with respect to the first natural modes was investigated 
earlier in [1-3]. 

1. E Q U A T I O N S  O F  M O T I O N  

Suppose a homogeneous, rectilinear, viscoelastic rod of length l, with Voigt internal friction, is clamped 
to a fixed base in a cantilever manner (Fig. 1) and loaded with a follower force P. An absolutely rigid 
body of mass M and moment of inertia A is then fixed at its centre of mass onto the end of the rod. 
The equations of motion of the discrete-continuous system (DCS) being considered under the action 
of a small force F(T) (T is the time), in dimensionless variables and parameters and linearized in the 
neighbourhood of  the zero state Y(Z, T) = O(T) = 0, have the form 

d2y l ( t )  
m ~  = n ( t ) +  f ( t ) ,  a d2~p(t) = b ( t )  

d t  2 d t  2 

1 +"  O~O4Y(Z't)  _O2y(z , t )  O2y(z , t )  _ 0 
r g t )  + p + a? 

0y(1,  t) 
z = 0: y ( O , t )  Oy(O, t )  _ 0; z = 1: y(1,  t) --- y l ( t ) ,  = tp(t) (1.1) 

= ~z bz 

n( t )  (1 ' " o ) o 3 y ( l '  t) b( t )  = - ( 1  ' " 3 ~ o 2 y ( l ' t )  

d~p(O) Oy(z, O) d y l ( O )  = tp(O) = = y ( z , O )  = - 0 
t = O: Y ] ( O )  = dt  d t  Ot 
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Here, 

f l  4~-112 Y YI Z ~  l 12 
t = TPE-I  t ) , y = - ~ ,  yl = - ~ ,  z =  7, 7"~1 ,  tp= ~ ,  p = - ~ P  

13 M, = __A, l 3 l 2 ( ~ "  14,-1/2 
f = - ~ F ,  ra = ~ a Pl 3 n = - ~ N ,  b = -~i-~B, T = h~P~-l) 

E1 is the stiffness of the section of the rod under flexure, p is the linear density if the rod, h is the Voigt 
coefficient of internal friction, and 8 is the characteristic dimension of the transverse cross-section of 
the rod. 

2. THE D Y N A M I C  M O D E L  OF A L I N E A R I Z E D  D I S C R E T E -  
C O N T I N U O U S  SYSTEM 

Suppose the functions f(t), yl(t), cp(t), n(t), b(t) and y(z, t) satisfy the conditions for the existence of a 
Laplace integral transform with respect to the time t. The transforms of the equations of the linearized 
discrete-continuous system 

m~,2yl(~,) = n(~,)+f(~,),  a~,2tp(~.) = b(~,) (2.1) 

2 
b4y(z, ~,...........~) + ~(~,)b y(Z, ~,) k2(~)y(z, ~,) = 0 

Oz 4 Oz 2 

k2 p k2(~,) 
1 +¥~ , '  = 1 + T~, 

(2.2) 

z = 0: y(0 ,~)  = by(0,Oz k) = 0; z = 1: y(1 ,~)  = yl(~),  by(1,Oz k) = 9(k)  (2.3) 

n(~,) = (1 + T~,) Oay(l' ~') b(~,) -(1 + "a'OZY(1------z' ~') (2.4) 
bz 3 , = t ~ ) bz 2 

then follow from relations (1.1). 
Here, ~ = a + io, ~ > ~0 is the parameter of the Laplace transform and yl(~), cp(k), n(~.), b(~,), 

y(z, ~), f(~) are the transforms of the corresponding originals. 
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The general solution of the ordinary homogeneous differential equation (2.2) has the form 

y(z, ~) = C l sinrlz + C2cosrlz + C3shr2z + C4chr2z 

r~,2(~,)= "1- ~ ~-"~) + ( ( ~ ' ~ ) 2  + k2(~,)) 1/2 (2.5) 

By satisfying the boundary conditions (2.3), we can determine the integration constants C1, C2, Ca 
and Ca. On substituting the functiony(z, ~), which is now known, into expressions (2.4) and, then, into 
(2.1), we obtain a mapping of the concentrated reactions of the system, that is, of the parameters of 
the perturbed motion of the absolutely rigid body 

Qj(~,) 
yl(X) = Wl(~) f (~ , ) ,  ¢p(~,) = W2(~,)f(~,), Wj(~,) = . - ~ ,  j = 1, 2 

D(~,) = ma~,4+ (a~-~ + m~-~)~[~,3+ 

+ A2 

QI(~.) = aZ2+-~('y~.+ 1), Q2(~) = --~-[('~,~+ 1), A = -VIIV22-VI2V21 

3 2 3 • 
~!1 V22(rl c ° s r l  r~shr2) = _ + r l r 2 c h r  2 )  - V21 (-  r I slnr I + (2.6) 

3 • 3 3 2 
~12 ---- Vii(-- r lSlnr l  + r2shr2) - V l 2 ( r l c ° s r l  + rlr2chr2) 

2 • 2 2 
~21 = V22(rlslnrl  + rlr2shr2) + v21( r i c°s r l  + r2chr2) 

2 2 2 • 
~22 -- Vli(rl cosrl + r2chr2) + + = Vl2(rl star1 rlr2shr 2) 

r 1 
vi i  = s i n r l - ~ 2 s h r  2, 

v21 
v12 -- ~ -. c o s t  1 - c h r 2 ,  

rl 
V22 = r l s i n r  I + r 2 s h r  2 

Here, D(~,) is a characteristic quasi-polynomial, Qj(~) are the perturbing quasi-polynomials and Wj(~) 
are the concentrated transfer functions in the form of quasi-rational fractions. 

Then, on introducing the transforms of the concentrated reactionsyl(~.) and ¢p(~), which, according 
to expressions (2.6) are then known, into the relations for the constants of integration C1, C2, C3, C4 
and substituting into Eq. (2.5), we obtain the transform of the distributed reaction of the system 

y(z, ~,) = W(Z, ~,)f(~,), W(Z, ~,) = Q(z, ~,) 
D(g) 

a 
Q(z, ~) = -~[~l(Z, ~')V22 + ~2(Z, ~)V21] ~'2 4" 

4" ~2[~tI(Z , ~.)(V12~21 -- V22~22) - ~2(Z, ~,)(Vil~21 4" V21~22)](~, 4" 1) 

(2.7) 

r I 
~tl(Z, ~) = s inr lz-  ~2shr2 z, ~t2(Z, ~,) = cosr lz -  chr2z 

where Q(z, ~) is the distributed perturbing quasi-polynomial and W(z, ~,) is the distributed transfer 
function. 
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Note that the concentrated transfer functions Wj(X) and the distributed transfer function W(z, ~) are 
respectively the transforms of the transient impulse functions qj(t), concentrated with respect to the 
output Yl@), q~(X) and of the transient impulse function q(z,  t), distributed according to the output 
y(z,  t), of the linearized discrete-continuous system perturbed by the Dirac functionf(t) = 6(t). In this 
case, Q(1, ~.) = QI(£), W(1, X) = WI(~L ). 

Expressions (2.6) and (2.7) define a discrete-continuous system with a dynamic model of the rod where 
the whole infinite spectrum of characteristic frequencies and mode of vibration of the rod are taken 
into account in terms of the variable coefficients ~yjAq(v, j = 1, 2), kq(z, t)v22 Aq, ~t2(z, t)v21 A-l, 
~l(g,  ~)(V12~21 -- V22~22)A -2, ~2(Z, ~,)(Vl1~21 - V21~22)A -2. 

3. THE S T A B I L I T Y  AND T R A N S I E N T  I M P U L S E  F U N C T I O N S  OF THE 
D Y N A M I C  M O D E L  OF A N O N - C O N S E R V A T I V E  D I S C R E T E -  

C O N T I N U O U S  SYSTEM 

We will investigate the stability of the dynamic model (2.6). Note that the functions ~vj(~,)/A(3.) 
(v, j = 1, 2) are analytic when Re~ > 0, that the equalities 

~w(-io)  _ ~w(io) 

A(- io)  A ( i o ) '  
v , j  -- 1,2 (3.1) 

hold and that the limits 

lim ~vj = b w  ' v , j  = 1 , 2  

131t = 3/4, bl ! = _#/~y-3/4,  ~12 = 1/2, bl  2 - - _ y - l / 2  

T -1/2, ~ T  -114 [~21 = 1/2, b21 = - [~22 = 1/4, b22 = 

(3.2) 

exist when Re~, > 0. 
In accordance with condition (3.1), the equalities 

ReD(-i¢.o) = ReD(ico), ImD(-Ro) = -ImD(io~) 

ReQj(- i¢o)  = ReQj(i{o), ImQj(- i¢o)=-ImQj(i¢o);  j = 1,2 
(3.3) 

hold. 
According to relations (3.2), real numbers g, [3 and ~ exist such that 

when Re~, _> 0 lim D(~.) = Co, lim QI(~') Q2(~') x-~'~, n+z x._+**-~T ~ = c l, lim X~** 2L *+a 

n+z>k+l +l, n+Z>s+a+l ,  Icll<**, Ic21<o*, c0*0 

~ = C  2 
(3.4) 

where n, k and s are integral powers and ~, [3 and ~ are the increments in the degrees of the quasi- 
polynomials D@), QI(~), Q2(~) respectively when ~. ---> oo, Re3. > 0. 

We now note the cases in which relations (3.4) are satisfied: 
(1) if a ;~ 0, m * 0, T ~ 0, then 

n = 4,  X = 0,  c o = m a ,  k = 2, 1 ~ = 0 ,  
(3.5) 

c I = a, s = 1, a = 1/2, c 2 =-b21T 

(2) if a = 0, T ;~ 0, then 

3, r ag0 ,  {1/2, m # O ,  ~m'ybt2, m # O ,  

n = 2, m = O' X = 1, m = 0 , '  Co = [ (b l lb22-b12b21)T 2, m = 0 (3.6) 

k = 1, 13 = 1/4, c I = b22 T, s = 1, ~ = 1/2, c 2 = - b 2 1 T  
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Hence, relations (3.4) and (3.3) are satisfied in the above-mentioned cases and, according to the well- 
known definition [4, 5], the quasi-rational fractions Wj(~,) are physically possible. Moreover, the functions 
D(k), Qj(~,) are analytic on the imaginary axis and in the right half of the complex plane (k). 
Consequently, according to the theorems in [4, 5] on the stability of quasi-rational fractions, the dynamic 
model (2.6) is asymptotically stable if the characteristic quasi-polynomial D(~,) is stable, that is, if all 
of its roots lie to the left of the imaginary axis in the complex plane (~,). If just one of the roots of the 
quasi-polynomial D(~,) lies to the right of the imaginary axis of the complex plane (~,), then the dynamic 
model (2.6) is unstable. Since the function D(~,) is analytic on the imaginary axis and in the right half 
of the complex plane ~, = ~ + ito and, according to relations (3.3) and (3.4), the conditions 

when R e k > 0  l imD(k)  = c0*0  

'q(O~(-o*,**): D(i(o) = u(oo)+ix)(oo)*O, u(-oo) = u(~),  1)(~) = - o ( o ) )  

are satisfied, then, according to the theorem on the stability of a quasi-polynomial [4], all of the roots 
of the quasi-polynomial D(k) will be located to the left of the imaginary axis of the complex plane (~) 
if, as to increases monotonically from 0 to o% the vector D(ito) turns in the (u, ia~)-plane from the positive 
real semi-axis in a positive direction through an angle of (n + X)g/2, that is, an increment of argument 

¢ = A argD(ito) = (n +X)g/2 (3.7) 
O g ( o g ~  

is obtained. 
It follows from the proof of the above-mentioned theorem presented in [4] that, in the case of an 

unstable quasi-polynomial D(k) when N of its roots are located in the right half-plane of (~,), the vector 
D(ito) obtains an increment of argument 

t~ = A argD(ito) = (n + X)rc/2 - Nx (3.8) 
0 < t ~ < ~  

We now return to the distributed dynamic model (2.7). It can be seen that the equalities 

y(~,) = W(z, ~,)f(~,), W(z, ~,) = Q(z, ~,)ID(~,) 

hold at any fixed point z e (0, 1] of the median line of the rod. 
All the arguments relating to the stability of the quasi-rational fractions Wj(~,) will also hold in the 

case of the quasi-rational fractions W(z, k). 
Consequently, the dynamic model of a linearized, non-conservative discrete-continuous system being 

considered is asymptotically stable in cases (3.5) and (3.6) if the equality (3.7) is satisfied and all of the 
roots of the quasi-polynomial D(k) lie in the plane (k) to the left of the imaginary axis. Furthermore, 
the location of the hodograph of the vector D(ito) = u(to) + iv(to) in the (u, iv)-plane when 0 ___ o) < 
as a function of the increasing follower forcep enables one to make a judgment concerning the boundary 
of the asymptotic stability domain to which the critical value of the follower force p = p ,  corresponds. 
Whenp  > p , ,  the system is unstable, the roots of the characteristic quasi-polynomial D(~,) transfer into 
the right half of the complex plane (~,) and the number N of these roots can be determined using relation 
(3.8). 

Note that condition (3.4) is not satisfied in the case when y = 0 and the quasi-rational fractions Wj(k) 
are not physically possible. This is in accordance with the known conclusion [2] concerning the fact that 
a model of a non-conservative system is inadmissible when Y = 0 and a quasi-critical force, which differs 
from the true critical force p , ,  calculated when Y ~ 0, corresponds to it. The results of the analysis of 
the dynamic model (2.6) using the transfer function Wl(k) = QI(~,)/D(~,) in cases (3.5) and (3.6) when 
Y ~ 0 are presented below. 

The frequency hodographs of the vector D(ito), 0 _< to < ~ in the (u, iv)-plane are shown in Fig. 2 
as a function of the magnitude of the follower forcep for the case of a viscoelastic rod with an absolutely 
rigid body on the end when y = 0.1, m = 1, a = 0.4, n = 4, Z = 0. W h e n p  = 3.13 < p ,  (curve 1), 
according to expression (3.7), we have ~) = 2it, and the system is asymptotically stable. When p = 
p ,  = 4.13 (curve 2), the line of the hodograph passes through the point (0, 0), and the system lies on 
the boundary of stability. Whenp  = 5.13 > p ,  (curve 3), we have ¢ = 0, that is, according to expression 
(3.8), two roots of the characteristic quasi-polynomial D(~,) transferred into the right half of the complex 
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plane (~), and the system became  unstable. Similarly, in the case of  a viscoelastic rod with a concentra ted 
mass  on the end  Y = 0.1, m = 1, a = 0, n = 3, Z = 0.5, the hodographs  of  the vec tor  D(io~), 0 < co < o~ 
are shown for  an asymptotical ly stable system w h e n p  = 5.263 < p .  = 8.263, ~ = 7rc/4 (curve 4), then  
for  a system on the boundary  of  stability w h e n p  = p .  = 8.263 (curve 5) and for  an unstable  system 
w h e n p  = 11.263 > p .  = 8.263, $ = -re/4 (curve 6). 

As  can be  seen f rom the hodographs  of  D(ic0), in the case of  a viscoelastic rod  wi thout  a load on the 
end  y = 0.1, m = 0, a = 0, n = 2, Z = 1, the rod  is asymptotical ly stable w h e n p  = 10.38 < p .  = 13.64, 

= 3n/2 (curve 7), it is on the boundary  of  s tabi l i typ  = p .  = 13.64 (curve 8), and the rod  is unstable  
w h e n p  = 15.38 > p .  = 13.64, ~ = 7t/2 (curve 9). All o f  the hodographs  of  D(R0) cons idered  above are 
p resen ted  in the special scale 

u + i v  = D( i to) (ArshlD( i to) l ) / ID( i to)[  

T h e  boundar ies  of  the stability domains  for  different  coefficients of  internal  friction y for  a rod with 
a concen t ra ted  mass  m on the end when  a = 0 in the p lane  of  the p a r a m e t e r s  (m, p )  have been  
cons t ruc ted  in Fig. 3(a). The  stability domains  are  located  below the corresponding lines. I t  can be seen 
that  an increase in the mass  m and a decrease  in the coefficient of  internal  friction reduces  the value 
of  the critical fol lower f o r c e p ,  and substantially reduces  the stability domain .  However ,  when  y = 0.01, 
the stability domain  reaches  its smallest  asymptot ic  value and, when  there  is a fur ther  decrease  in y to 
the very small value of  y = 0.0001, the line of  the bounda ry  of  the stability domain  stays practically 
unchanged.  Note  that,  when  m = 0 and y = 0.0001, the critical force has the v a l u e p .  = 10.96, that  is, 
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it exceeds the critical forcep,  = 9.328 [3], calculated using an approximate model with an approximation 
employing the first two natural modes, by 17.5%. 

The boundaries of the stability domains for different values of the coefficient ? are shown in the plane 
of the parameters (a ,p)  in Fig. 3(b) for a rod with an absolutely rigid body of mass m = 1 and moment 
of inertia a e [0, 1] fixed on the end. It can be seen that a decrease in 7 and an increase in a substantially 
reduces the value of the critical follower force. For example, p ,  = 3.7 when m = 1, a = 1, y = 0.01. 

Supposef(t) = 5(0 is the Dirac delta function. Then, the reaction of the discrete-continuous system 
at the output yl(t) to a given perturbation is the concentrated transient impulse function, which was 
previously denoted by ql(t). Since the transfer function WI(~.) is the transform off the concentrated 
transient impulse function ql(t) (the Laplace integral) with an abscissa of absolute convergence ~ = 
~, then, using a Mellin integral, we have 

fro+i*,:, 
1 

qL(t) = 2n"] I W(~)eZta~' 
oto- i** 

~ 0 > a ,  t > 0  (3.9) 
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The concentrated transient impulse functions ql(t) were calculated using an efficient algorithm [6] 
for values of  the coefficient of internal friction y = 0.0001, 0.01 and 0.1 in the rod for the cases of an 
asymptotically stable systemp < p ,  and a system on the boundary of stabilityp = p ,  for different types 
of  loading and, also, without a load on the end of the rod. 

The calculated transient impulse functions for the different sets of values of the parameters  (the 
corresponding number  of  a set is indicated below in brackets) are shown in Fig. 4. For a rod without 
a load on the end (m = a = 0) when p = 8, the transient impulse functions are asymptotically stable 
for the cases when y = 0.0001 (1), y = 0.01 (2), y = 0.1 (3) (the first three graphs). An increase in the 
coefficient y leads to a smoothing out of  the high frequency modes and to a decrease in the amplitude 
of the vibrations and the time of the transient. W h e n p  = p ,  = 10.96, y = 0.0001 (4) ;p  = p ,  = 10.96, 
y = 0.01 (5); p = p ,  = 13.63, y = 0.1 (6) (the following three graphs), the transient impulse functions 
at the boundary of stability take the form of non-decaying vibrations. When y = 0.01, the amplitude of 
the high frequency modes is negligibly small and the end of the rod vibrates in the fundamental  mode 
with an amplitude of 300 and a frequency of 0.85. When y = 0.0001, the amplitude of the high frequency 
modes reaches a value of 100 and, consequently, the amplitude of the non-decaying transient impulse 
function increases up to 400. 

The asymptotically stable transient impulse functions are shown for a rod with a concentrated mass 
m = 1, a = 0 on the end w h e n p  = 6 < p ,  for the cases y = 0.0001 (7), y = 0.01 (8), y = 0.1 (9) and, 
also, the transient impulse functions on the boundary of stability for the casesp = p ,  = 7.9, y = 0.0001 
(10);p = p ,  = 7.9, y = 0.01 ( l l ) ; p  = p ,  = 8.26, y = 0.1 (12). Similarly, the asymptotically stable transient 
impulse functions for a rod with an absolutely rigid body m = 1, a = 0.4 on the end w h e n p  = 3 < p ,  
are shown for the cases y = 0.0001 (13), y = 0.01 (14), y = 0.1 (15) and, also, the transient impulse 
functions for the casesp  = p ,  = 4, y = 0.0001 (16);p = p ,  = 4, y = 0.01 (17);p = p ,  = 4.13, y = 0.1 
(18) on the boundary of stability. 

It is clear from the graphs in Fig. 4 that an increase in the coefficient of internal friction y smooths 
out the high-frequency modes of vibration and that an increase in the follower force p leads to some 
increase in the frequency and amplitude of the fundamental  (lowest) mode of vibration. 
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